Abstract
With the worldwide development of anthelmintic resistance, new alternative approaches for controlling gastrointestinal nematodes in sheep are urgently required. In this work, we identified and characterized native nematode-trapping fungi. We collected seven isolates of fungi with the capacity to form adhesive, three-dimensional networks as the main mechanism to capture, kill, and consume nematodes. The nematode-trapping fungi were classified into two groups; the first group includes the R2-13 strain, showing faster growth, abundant aerial hyphae, scarce conidia production, bigger conidia, and it formed a clade with Arthrobotrys oligospora sensu stricto. The second comprises the A6, A12, A13, R2-1, R2-6, and R2-14 strains, showing a growth adhering to the culture medium, forming little aerial hyphae, smaller conidia, and these formed a sister clade to A. oligospora. Except for the R2-6 strain, conidia production was induced by light. In all the strains, the predatory capacity against the sheep gastrointestinal nematode Haemonchus contortus was greater than 58% compared with the control group. The A6 and A13 strains were the most active against the infective H. contortus third instar (L3) larvae, with an average capture capacity of 91%. Altogether, our results support evidence for a novel A. oligospora variety with high nematode-trapping activity and promissory in helminthic control.
Funder
Universidad Autónoma de Querétaro
Subject
Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献