A Deletion Encompassing the Furin Cleavage Site in the Spike Encoding Gene Does Not Alter SARS-CoV-2 Replication in Lung Tissues of Mink and Neutralization by Convalescent Human Serum Samples

Author:

Valleriani FabriziaORCID,Jurisic Lucija,Di Pancrazio ChiaraORCID,Irelli Roberta,Ciarrocchi Eugenia,Martino Michele,Cocco Antonio,Di Felice ElisabettaORCID,Colaianni Maria Loredana,Decaro NicolaORCID,Bonfini Barbara,Lorusso AlessioORCID,Di Teodoro GiovanniORCID

Abstract

SARS-CoV-2 has been shown to lose the furin polybasic cleavage site (FCS) following adaptation on cell culture. Deletion occurring in this region, which may include also the FCS flanking regions, seem not to affect virus replication in vitro; however, a chimeric SARS-CoV-2 virus without the sole FCS motif has been associated with lower virulence in mice and lower neutralization values. Moreover, SARS-CoV-2 virus lacking the FCS was shed to lower titers from experimentally infected ferrets and was not transmitted to cohoused sentinel animals, unlike wild-type virus. In this study, we investigated the replication kinetics and cellular tropism of a SARS-CoV-2 isolate carrying a 10-amino acid deletion in the spike protein spanning the FCS in lung ex vivo organ cultures of mink. Furthermore, we tested the neutralization capabilities of human convalescent SARS-CoV-2 positive serum samples against this virus. We showed that this deletion did not significantly hamper neither ex vivo replication nor neutralization activity by convalescent serum samples. This study highlights the importance of the preliminary phenotypic characterization of emerging viruses in ex vivo models and demonstrates that mink lung tissues are permissive to the replication of a mutant form of SARS-CoV-2 showing a deletion spanning the FCS. Notably, we also highlight the need for sequencing viral stocks before any infection study as large deletions may occur leading to the misinterpretation of results.

Funder

European Union

Italian Ministry of Health

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3