Evaluation of Nucleoside Analogs as Antimicrobials Targeting Unique Enzymes in Borrelia burgdorferi

Author:

Chakraborti Monideep,Schlachter Samantha,Primus Shekerah,Wagner Julie,Sweet BrandiORCID,Carr ZoeyORCID,Cornell Kenneth A.,Parveen NikhatORCID

Abstract

The first line therapy for Lyme disease is treatment with doxycycline, amoxicillin, or cefuroxime. In endemic regions, the persistence of symptoms in many patients after completion of antibiotic treatment remains a major healthcare concern. The causative agent of Lyme disease is a spirochete, Borrelia burgdorferi, an extreme auxotroph that cannot exist under free-living conditions and depends upon the tick vector and mammalian hosts to fulfill its nutritional needs. Despite lacking all major biosynthetic pathways, B. burgdorferi uniquely possesses three homologous and functional methylthioadenosine/S-adenosylhomocysteine nucleosidases (MTANs: Bgp, MtnN, and Pfs) involved in methionine and purine salvage, underscoring the critical role these enzymes play in the life cycle of the spirochete. At least one MTAN, Bgp, is exceptional in its presence on the surface of Lyme spirochetes and its dual functionality in nutrient salvage and glycosaminoglycan binding involved in host-cell adherence. Thus, MTANs offer highly promising targets for discovery of new antimicrobials. Here we report on our studies to evaluate five nucleoside analogs for MTAN inhibitory activity, and cytotoxic or cytostatic effects on a bioluminescently engineered strain of B. burgdorferi. All five compounds were either alternate substrates and/or inhibitors of MTAN activity, and reduced B. burgdorferi growth. Two inhibitors: 5′-deoxy-5′-iodoadenosine (IADO) and 5′-deoxy-5′-ethyl-immucillin A (dEt-ImmA) showed bactericidal activity. Thus, these inhibitors exhibit high promise and form the foundation for development of novel and effective antimicrobials to treat Lyme disease.

Funder

National Institutes of Health

National Institute of General Medical Sciences

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3