Abstract
Antimicrobial resistance is one of the greatest dangers to public health of the 21st century, threatening the treatment and prevention of infectious diseases globally. Disinfection, the elimination of microbial species via the application of biocidal chemicals, is essential to control infectious diseases and safeguard animal and human health. In an era of antimicrobial resistance and emerging disease, the effective application of biocidal control measures is vital to protect public health. The COVID-19 pandemic is an example of the increasing demand for effective biocidal solutions to reduce and eliminate disease transmission. However, there is increasing recognition into the relationship between biocide use and the proliferation of Antimicrobial Resistance species, particularly multidrug-resistant pathogens. The One Health approach and WHO action plan to combat AMR require active surveillance and monitoring of AMR species; however, biocidal resistance is often overlooked. ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens and numerous fungal species have demonstrated drug and biocidal resistance where increased patient mortality is a risk. Currently, there is a lack of information on the impact of biocide application on environmental habitats and ecosystems. Undoubtedly, the excessive application of disinfectants and AMR will merge to result in secondary disasters relating to soil infertility, loss of biodiversity and destruction of ecosystems.
Subject
Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献