Activity of Liquid and Volatile Fractions of Essential Oils against Biofilm Formed by Selected Reference Strains on Polystyrene and Hydroxyapatite Surfaces

Author:

Dudek-Wicher Ruth,Paleczny JustynaORCID,Kowalska-Krochmal Beata,Szymczyk-Ziółkowska PatrycjaORCID,Pachura NataliaORCID,Szumny AntoniORCID,Brożyna Malwina

Abstract

Biofilms are surface-attached, structured microbial communities displaying higher tolerance to antimicrobial agents in comparison to planktonic cells. An estimated 80% of all infections are thought to be biofilm-related. The drying pipeline of new antibiotics efficient against biofilm-forming pathogens urges the search for alternative routes of treatment. Essential Oils (EOs), extracted from medicinally important plants, are a reservoir of bioactive compounds that may serve as a foothold in investigating novel antibiofilm compounds. The aim of this study was to compare antimicrobial activity of liquid and volatile fractions of tested EOs against biofilm-forming pathogens using different techniques. In this research, we tested five EOs, extracted from Syzygium aromaticum L., Boswelia serrata Roxb., Juniperus virginiana L., Pelargonium graveolens L. and Melaleuca alternifolia Cheel., against planktonic and biofilm forms of five selected reference strains, namely Staphylococcus aureus, Enterococcus faecalis, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. To obtain cohesive results, we applied four various methodological approaches: to assess the activity of the liquid fraction of EOs, disc diffusion and the microdilution method were applied; to test EOs’ volatile fraction, the AntiBioVol assay and modified Antibiofilm Dressing Activity Measurement (A.D.A.M.) were used. The molecular composition and dynamics of antimicrobial substances released from specific EOs was measured using Gas Chromatography–Mass Spectrometry (GC-MS). The antimicrobial potency of EO’s volatile fraction against biofilm formed by tested strains differed from that of the liquid fraction and was related to the molecular weight of volatile compounds. The liquid fraction of CW-EO and volatile fraction of F-EO acted in the strongest manner against biofilm of C. albicans. The addition of 0.5% Tween 20 to liquid phase, enhanced activity of G-EO against E. coli and K. pneumoniae biofilm. EO activity depended on the microbial species it was applied against and the chosen assessment methodology. While all tested EOs have shown a certain level of antimicrobial and antibiofilm effect, our results indicate that the choice of EO to be applied against a specific biofilm-forming pathogen requires careful consideration with regard to the above-listed aspects. Nevertheless, the results presented in this research contribute to the growing body of evidence indicating the beneficial effects of EOs, which may be applied to fight biofilm-forming pathogens.

Funder

Wroclaw Medical University

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3