A Loss of Function in LprG−Rv1410c Homologues Attenuates Growth during Biofilm Formation in Mycobacterium smegmatis

Author:

Nisbett Lisa-Marie1ORCID,Previti Mary L.1,Seeliger Jessica C.1ORCID

Affiliation:

1. Department of Pharmacological Sciences, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA

Abstract

MmpL (mycobacterial membrane protein large) proteins are integral membrane proteins that have been implicated in the biosynthesis and/or transport of mycobacterial cell wall lipids. Given the cellular location of these proteins, however, it is unclear how cell wall lipids are transported beyond the inner membrane. Moreover, given that mycobacteria grow at the poles, we also do not understand how new cell wall is added in a highly localized and presumably coordinated manner. Here, we examine the relationship between two lipid transport pathways associated with the proteins MmpL11 and LprG−Rv1410c. The lipoprotein LprG has been shown to interact with proteins involved in cell wall processes including MmpL11, which is required in biofilms for the surface localization of certain lipids. Here we report that deletion of mmpL11 (MSMEG_0241) or the lprG−rv1410c operon homologues MSMEG_3070−3069 in Mycobacterium smegmatis produced similar biofilm defects that were distinct from that of the previously reported mmpL11 transposon insertion mutant. Analysis of pellicle biofilms, bacterial growth, lipid profiles, and gene expression revealed that the biofilm phenotypes could not be directly explained by changes in the synthesis or localization of biofilm-related lipids or the expression of biofilm-related genes. Instead, the shared biofilm phenotype between ΔMSMEG_3070−3069 and ΔmmpL11 may be related to their modest growth defect, while the origins of the distinct mmpL11::Tn biofilm defect remain unclear. Our findings suggest that the mechanisms that drive pellicle biofilm formation in M. smegmatis are not connected to crosstalk between the LprG−Rv1410c and MmpL11 pathways and that any functional interaction between these proteins does not relate directly to their lipid transport function.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

Reference48 articles.

1. WHO (2022). Global Tuberculosis Report, WHO.

2. The Envelope of Mycobacteria;Brennan;Annu. Rev. Biochem.,1995

3. Disclosure of the Mycobacterial Outer Membrane: Cryo-Electron Tomography and Vitreous Sections Reveal the Lipid Bilayer Structure;Hoffmann;Proc. Natl. Acad. Sci. USA,2008

4. The Mycobacterial Cell Envelope-Lipids;Jackson;Cold Spring Harb. Perspect. Med.,2014

5. The Role of Mycobacterial Lipids in Host Pathogenesis;Nigou;Drug Discov. Today Dis. Mech.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3