Genetic Characterization and Evolution of Porcine Deltacoronavirus Isolated in the Republic of Korea in 2022

Author:

Kim Hye-Ryung12,Park Jonghyun12,Lee Kyoung-Ki3,Jeoung Hye-Young3,Lyoo Young S.4,Park Seung-Chun15ORCID,Park Choi-Kyu1

Affiliation:

1. College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea

2. DIVA Bio Incorporation, Daegu 41519, Republic of Korea

3. Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea

4. College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea

5. Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine and Cardiovascular Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea

Abstract

Porcine deltacoronavirus (PDCoV) is an emerging coronavirus that causes diarrhea in nursing piglets. Since its first outbreak in the United States in 2014, this novel porcine coronavirus has been detected worldwide, including in Korea. However, no PDCoV case has been reported since the last report in 2016 in Korea. In June 2022, the Korean PDCoV strain KPDCoV-2201 was detected on a farm where sows and piglets had black tarry and watery diarrhea, respectively. We isolated the KPDCoV-2201 strain from the intestinal samples of piglets and sequenced the viral genome. Genetically, the full-length genome and spike gene of KPDCoV-2201 shared 96.9–99.2% and 95.8–98.8% nucleotide identity with other global PDCoV strains, respectively. Phylogenetic analysis suggested that KPDCoV-2201 belongs to G1b. Notably, the molecular evolutionary analysis indicated that KPDCoV-2201 evolved from a clade different from that of previously reported Korean PDCoV strains and is closely related to the emergent Peruvian and Taiwanese PDCoV strains. Furthermore, KPDCoV-2201 had one unique and two Taiwanese strain-like amino acid substitutions in the receptor-binding domain of the S1 region. Our findings suggest the possibility of transboundary transmission of the virus and expand our knowledge about the genetic diversity and evolution of PDCoV in Korea.

Funder

Animal and Plant Quarantine Agency

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3