AEN Suppresses the Replication of Porcine Epidemic Diarrhea Virus by Inducing the Expression of Type I IFN and ISGs in MARC-145 Cells

Author:

Luo Miao123,Ma Jiale123,Pan Xinming123,Zhang Xinqin123,Yao Huochun123

Affiliation:

1. College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China

2. MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China

3. Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China

Abstract

Apoptosis-enhancing nuclease (AEN), which shares close evolutionary relationships with the interferon-stimulated gene 20 protein (ISG20) homologs in humans, is a member of the DEDDh exonuclease family. Numerous studies on various pathogens have identified the essential roles of ISG20 in inhibiting virus replication. However, the fundamental functions of AEN during viral infection remain largely unknown. This study discovered that AEN expression was significantly upregulated in MARC-145 cells infected with Porcine epidemic diarrhea virus (PEDV) strain 85-7. In contrast, the amount of AEN protein decreased as viral replication increased. It was found that PEDV nsp1 and nsp5 mediated the decrease in AEN production, suggesting that an increase in AEN was not conducive to virus replication. By comparing AEN and its exonuclease-inactive mutant AEN-4A, we determined that the antiviral activity of AEN was independent of its exonuclease function. qPCR analyses revealed that AEN and AEN-4A could induce a significant increase in the transcription levels of IFN-α, IFN-β, and ISGs (OASL, IFI44, IFIT2, ISG15, Mx1, Mx2), and that AEN-4A has a higher induction ability. Overexpression of AEN and AEN-4A in MARC-145 cells targeting IFN-β knockdown or IFN-deficient Vero cells showed reduced or a complete loss of antiviral activity of both, suggesting that AEN may activate the type I IFN immune response and promote the expression of ISGs, thereby inhibiting PEDV replication. Taken together, our data prove the novel mechanism of AEN-mediated virus restriction.

Funder

National Key Research and Development Program of China

“Young Scholars” cultivation program of the College of Veterinary Medicine in Nanjing Agricultural University

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3