The Impact of Intraspecies Variability on Growth Rate and Cellular Metabolic Activity of Bacteria Exposed to Rotating Magnetic Field

Author:

Woroszyło Marta,Ciecholewska-Juśko Daria,Junka AdamORCID,Pruss Agata,Kwiatkowski PawełORCID,Wardach MarcinORCID,Fijałkowski KarolORCID

Abstract

Majority of research on the influence of magnetic fields on microorganisms has been carried out with the use of different species or different groups of microorganisms, but not with the use of different strains belonging to one species. The purpose of the present study was to assess the effect of rotating magnetic fields (RMF) of 5 and 50 Hz on the growth and cellular metabolic activity of eight species of bacteria: Staphylococcus aureus, Pseudomonas aeruginosa, Proteus mirabilis, Klebsiella pneumoniae, Enterococcus faecalis, Enterobacter cloacae, Moraxella catarrhalis, and Bacillus cereus. However, contrary to the research conducted so far, each species was represented by at least four different strains. Moreover, an additional group of S. aureus belonging to a single clonal type but representing different biotypes was also included in the experiment. The results showed a varied influence of RMF on growth dynamics and cellular metabolic activity, diversified to the greatest extent in dependence on the bacterial strain exposed to the RMF and to a lesser extent in dependence on the frequency of the generated magnetic field. It was found that, with regard to the exposed strain of the same species, the effect exerted by the RMF may be positive (i.e., manifests as the increase in the growth rate or/and cellular metabolic activity) or negative (i.e., manifests as a reduction of both aforementioned features) or none. Even when one clonal type of S. aureus was used, the results of RMF exposure also varied (although the degree of differentiation was lower than for strains representing different clones). Therefore, the research has proven that, apart from the previously described factors related primarily to the physical parameters of the magnetic field, one of the key parameters affecting the final result of its influence is the bacterial intraspecies variability.

Funder

National Science Center

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3