The Role of Senescent CD8+T Cells in the Pathogenesis of Disseminated Leishmaniasis

Author:

Abreu Cayo A.1ORCID,Nascimento Maurício Teixeira1,Bacellar Olívia2ORCID,Carvalho Lucas Pedreira12ORCID,Carvalho Edgar Marcelino12ORCID,Cardoso Thiago Marconi12

Affiliation:

1. LAPEC-Fiocruz, Salvador 40296-710, Brazil

2. Immunology Service, Federal University of Bahia, Salvador 40110-060, Brazil

Abstract

Disseminated leishmaniasis (DL) caused by L. braziliensis is characterized by the presence of 10 to more than 1000 lesions spread on the body. While protection against Leishmania is mediated by macrophages upon activation by IFN-γ produced by CD4+T cells, the pathology of disseminated leishmaniasis (DL) could be mediated by macrophages, NK, and CD8+T cells. Herein, we evaluate the participation of senescent CD8+T cells in the pathogenesis of DL. Methods: Peripheral blood mononuclear cells (PBMCs), biopsies, co-cultures of CD8+T cells with uninfected and infected macrophages (MØ), and PBMC cultures stimulated with soluble L. braziliensis antigen (SLA) for 72 h from patients with cutaneous leishmaniasis (CL) and DL were used to characterize senescent CD8+T cells. Statistical analysis was performed using the Mann–Whitney and Kruskal–Wallis tests, followed by Dunn’s. Results: Patients with DL have an increase in the frequency of circulating CD8+T cells that present a memory/senescent phenotype, while lesions from DL patients have an increase in the frequency of infiltrating CD8+T cells with a senescent/degranulation phenotype. In addition, after specific stimuli, DL patients’ circulating CD8+T with memory/senescent profile, showing degranulation characteristics, increased upon SLA stimuli, and those specific CD8+T cells from DL patients had an increased degranulation phenotype, causing more apoptosis of infected target cells. Conclusions: DL patients show a higher frequency of cytotoxic senescent CD8+T cells compared to CL patients, and that could promote the lysis of infected cells, although without parasite killing, releasing Leishmania to the extracellular compartment, contributing to the spread of parasites.

Funder

National Institutes of Health

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3