Simultaneous Nasal Carriage by Methicillin-Resistant and Methicillin Susceptible Staphylococcus aureus of Lineage ST398 in a Live Pig Transporter

Author:

Gómez Paula,Aspiroz Carmen,Hadjirin Nazreen F.,Benito Daniel,Zarazaga Myriam,Torres CarmenORCID,Holmes Mark A.

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) sequence type (ST)398 is a livestock associated (LA) lineage with zoonotic potential, especially in humans with live pig contact. The objective of this study was to characterize two S. aureus strains of lineage ST398 (one methicillin-resistant (MRSA), one methicillin-susceptible (MSSA)) isolated from the same nasal sample of a patient admitted in the Intensive-Care Unit of a Spanish Hospital, and with previous occupational exposure to live pigs, by whole-genome-sequencing (WGS). The sample was obtained during routine surveillance for MRSA colonization. Purified genomic DNA was sequenced using Illumina HiSeq 2000 and processed using conventional bioinformatics software. The two isolates recovered were both S. aureus t011/ST398 and showed similar resistance-phenotypes, other than methicillin susceptibility. The possession of antibiotic resistance genes was the same, except for the mecA-gene located in SCCmecV in the MRSA isolate. The MSSA isolate harbored remnants of a SCCmec following the deletion of 17342bp from a recombination between two putative primases. Both isolates belonged to the livestock-associated clade as defined by three canonical single-nucleotide-polymorphisms, and neither possessed the human immune evasion cluster genes, chp, scn, or sak. The core genome alignment showed a similarity of 99.6%, and both isolates harbored the same mobile genetic elements. The two nasal ST398 isolates recovered from the patient with previous occupational exposure to pigs appeared to have a livestock origin and could represent different evolutionary steps of animal-human interface lineage. The MSSA strain was formed as a result of the loss of the mecA gene from the livestock-associated-MRSA lineage.

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3