Quantitative Trait Locus Mapping for Fusarium Wilt Race 4 Resistance in a Recombinant Inbred Line Population of Pima Cotton (Gossypium Barbadense)

Author:

Abdelraheem Abdelraheem,Zhu Yi,Zhang Jinfa

Abstract

Fusarium oxysporum f. sp. vasinfectum (FOV) race 4 (FOV4) causes seedling death immediately after emergence, in addition to leaf chlorosis and necrosis, vascular discoloration, plant wilting, defoliation, and plant death at late stages. Breeding for FOV4 resistance is the most cost effective management method. In this study, 163 recombinant inbred lines (RILs) of FOV4-resistant Pima S-6 × susceptible 89590, together with the two parents (Gossypium barbadense), were artificially inoculated with FOV4 and assayed for resistance based on foliar disease severity ratings (DSR) at 30 days post inoculation (dpi) in two replicated tests in the greenhouse or controlled conditions. Significant genotypic variations were detected for FOV4 resistance in a combined analysis of variance. Although a significant genotype × test interaction was detected for DSR, the 10 most resistant RILs had significantly and consistently lower DSR than the susceptible parent in both tests. The heritability estimate for DSR was 0.65, indicating that two-thirds of the phenotypic variation for FOV4 resistance in this Pima RIL population was due to genetic factors. Based on 404 polymorphic SSR markers, five and four quantitative trait loci (QTL) on six chromosomes (c14, c17, c19, c21, c24, and c25) were detected in Tests 1 and 2, respectively, and each explained 15 to 29% of the phenotypic variation. Three QTL on c17, c24, and c25 were in common between the two tests, accounting for 60% and 75% of the QTL detected in Tests 1 and 2, respectively. The three QTL were also reported in previous studies and will be useful for marker-assisted selection for FOV4 resistance in Pima cotton.

Funder

Cotton Incorprated

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3