Discrimination of Gardnerella Species by Combining MALDI-TOF Protein Profile, Chaperonin cpn60 Sequences, and Phenotypic Characteristics

Author:

Bulavaitė AistėORCID,Maier Thomas,Pleckaityte Milda

Abstract

The description of Gardnerella vaginalis was recently updated and three new species, including nine genome species within Gardnerella, were defined using whole genome sequences and matrix assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry. A fast and simple method based on readily available techniques would be of immense use to identify Gardnerella species in research and clinical practice. Here we show that 34 previously characterized Gardnerella isolates were assigned to the species using partial chaperonin cpn60 sequences. The MALDI Biotyper from Bruker Daltonik GmbH demonstrated the capability to differentiate the phylogenetically diverse groups composed of G. vaginalis/G. piotii and G. leopoldii/G. swidsinskii. Among the phenotypic properties that characterize Gardnerella species are sialidase and β-galactosidase activities. Our data confirmed that the NanH3 enzyme is responsible for sialidase activity in Gardnerella spp. isolates. Almost all G. piotii isolates displayed a sialidase positive phenotype, whereas the majority of G. vaginalis strains were sialidase negative. G. leopoldii and G. swidskinskii displayed a sialidase negative phenotype. β-galactosidase is produced exclusively in G. vaginalis strains. Earlier determined phenotypic characteristics associated with virulence of Gardnerella isolates now assigned to the defined species may provide insights on how diverse species contribute to shaping the vaginal microbiome.

Funder

Lietuvos Mokslo Taryba

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3