The NLRP3 Inflammasome Is Dispensable in Methicillin-Resistant Staphylococcus aureus Urinary Tract Infection

Author:

Paudel Santosh1ORCID,Kumar Rahul2ORCID,Rogers Kenneth A.3,Saini Yogesh2,Patial Sonika4,Kulkarni Ritwij1

Affiliation:

1. Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504, USA

2. Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA

3. New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, LA 70560, USA

4. National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, Durham, NC 27709, USA

Abstract

The NLRP3 inflammasome is a cytoplasmic complex that senses molecular patterns from pathogens or damaged cells to trigger an innate immune defense response marked by the production of proinflammatory cytokines IL-1β and IL-18 and an inflammatory death called pyroptosis. The NLRP3 inflammasome is activated in the urinary tract by a variety of infectious and non-infectious insults. In this study, we investigated the role of the NLRP3 inflammasome by comparing the pathophysiology of methicillin-resistant Staphylococcus aureus (MRSA) ascending UTI in wild-type (WT) and Nlrp3−/− mice. The difference in the bacterial burden detected in the urinary tracts of MRSA-infected WT and Nlrp3−/− was not statistically significant at 6, 24, and 72 h post-infection (hpi). The levels of pro-inflammatory cytokines and chemokines as well as the numbers of granulocytes recruited to bladder and kidney tissues at 24 hpi were also similar between Nlrp3−/− and WT mice. The histopathological analysis of MRSA-infected bladder and kidney sections from Nlrp3−/− and WT mice showed similar inflammation. Overall, these results suggest that MRSA-induced urinary NLRP3 activity does not play a role in the pathophysiology of the ascending UTI.

Funder

University of Louisiana at Lafayette, College of Sciences, Dean’s startup funds

NIH National Institute of Allergy and Infectious Diseases

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3