Spatiotemporal Modeling of Aedes aegypti Risk: Enhancing Dengue Virus Control through Meteorological and Remote Sensing Data in French Guiana

Author:

Bailly Sarah1ORCID,Machault Vanessa2,Beneteau Samuel1ORCID,Palany Philippe3,Fritzell Camille1,Girod Romain4,Lacaux Jean-Pierre2,Quénel Philippe15ORCID,Flamand Claude167ORCID

Affiliation:

1. Epidemiology Unit, Institut Pasteur in French Guiana, Cayenne 97306, French Guiana

2. Aerology Laboratory, Observatoire Midi-Pyrénées (OMP), Université Paul Sabatier, 31062 Toulouse, France

3. Météo-France, Direction Antilles-Guyane, Fort-de-France 97262, Martinique

4. Medical Entomology Unit, Institut Pasteur in French Guiana, Cayenne 97306, French Guiana

5. University Rennes, Inserm, EHESP, Irset (Institut de Recherche En Santé, Environnement et Travail)—UMR-S 1085, 35000 Rennes, France

6. Epidemiology and Public Health Unit, Institut Pasteur in Cambodia, Phnom Penh 12201, Cambodia

7. Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, 75015 Paris, France

Abstract

French Guiana lacks a dedicated model for developing an early warning system tailored to its entomological contexts. We employed a spatiotemporal modeling approach to predict the risk of Aedes aegypti larvae presence in local households in French Guiana. The model integrated field data on larvae, environmental data obtained from very high-spatial-resolution Pleiades imagery, and meteorological data collected from September 2011 to February 2013 in an urban area of French Guiana. The identified environmental and meteorological factors were used to generate dynamic maps with high spatial and temporal resolution. The study collected larval data from 261 different surveyed houses, with each house being surveyed between one and three times. Of the observations, 41% were positive for the presence of Aedes aegypti larvae. We modeled the Aedes larvae risk within a radius of 50 to 200 m around houses using six explanatory variables and extrapolated the findings to other urban municipalities during the 2020 dengue epidemic in French Guiana. This study highlights the potential of spatiotemporal modeling approaches to predict and monitor the evolution of vector-borne disease transmission risk, representing a major opportunity to monitor the evolution of vector risk and provide valuable information for public health authorities.

Funder

Centre National d’Etudes Spatiales-Terre solide, Océan, Surfaces Continentales, Atmosphère Fund

European Regional Development Fund under EPI-ARBO

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3