Effects of Electromagnetic Radiation on Neuropeptide Transcript Levels in the Synganglion of Ixodes ricinus

Author:

Šofranková Lívia1ORCID,Baňas Miroslav1,Pipová Natália1ORCID,Majláth Igor1,Kurimský Juraj2ORCID,Cimbala Roman2ORCID,Pavlík Marek2ORCID,Mateos-Hernández Lourdes3ORCID,Šimo Ladislav3ORCID,Majláthová Viktória1ORCID

Affiliation:

1. Department of Animal Physiology, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04180 Košice, Slovakia

2. Department of Electrical Power Engineering, Faculty of Electrical Engeneering and Informatics, Technical University of Košice, Mäsiarska 74, 04120 Košice, Slovakia

3. Laboratoire de Santé Animale, Unitè Mixte de Recherche de Biologie Molèculaire et d’Immunologie Parasitaires (UMR BIPAR), Ecole Nationale Vétérinaire d’Alfort, INRAE, ANSES, F-94700 Maisons-Alfort, France

Abstract

Anthropogenic electromagnetic radiation is an important environmental factor affecting the functionality of biological systems. Sensitivity to various frequencies of electromagnetic radiation has been detected in ixodid ticks in the past. However, the physiological aspects of radiation effects have not yet been studied in ticks. In the presented experiment, 360 Ixodes ricinus ticks, 180 males and 180 females, were divided into 16 irradiated and 8 control groups. The irradiated groups were exposed to two different intensities of electromagnetic radiation with a frequency of 900 MHz at different lengths of exposure time. RT-PCR was utilized to determine the changes in mRNA levels in tick synganglia after irradiation. Four randomly selected neuropeptide genes were tested—allatotropin (at), FGLa-related allatostatins (fgla/ast), kinin, and arginine-vasopressin-like peptide (avpl). A significant decrease in transcript levels in all female groups exposed to higher intensity radiofrequency radiation for 1 to 3 h was found. After one hour of radiofrequency exposure, a significant downregulation in allatotropin expression in males was detected. A consistent downregulation of the at gene was detected in males irradiated with at a higher intensity. Unfortunately, the specific functions of the studied neuropeptides in ticks are not known yet, so a more comprehensive study is necessary to describe the effects of EMF on observed neuropeptides. This study represents the first report on the effects of the abiotic environment on tick neurophysiology.

Funder

Slovak Research and Development Agency

Internal Scientific Grant System of the Pavol Jozef Šafárik University in Košice

French National Research Agency

French Government’s Investissement d’Avenir program

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3