Impact of the Cultivation System and Plant Cultivar on Arbuscular Mycorrhizal Fungi of Spelt (Triticum aestivum ssp. Spelta L.) in a Short-Term Monoculture

Author:

Bohacz JustynaORCID,Korniłłowicz-Kowalska Teresa,Rybczyńska-Tkaczyk KamilaORCID,Andruszczak SylwiaORCID

Abstract

Native communities of arbuscular mycorrhizal fungi (AMF) constitute a natural biofertilization, biocontrol, and bioprotection factor for most agricultural crops, including cereals. The present study investigated the native AMF population in cultivated spelt, i.e., a cereal that has not been analyzed in this respect to date. In particular, the aim of the study was to determine the number of spores and the degree of AMF root colonization in two spelt cultivars (Franckenkorn and Badengold) from a 3-year monoculture grown in two different cultivation systems: conventional tillage and no-tillage systems. The study showed considerable accumulation of AMF spores in the soil (on average 1325 in 100 g of air-dry soil), with a wide range of their numbers, and not a very high degree of endomycorrhizal colonization (on average from 3.0% to 31%). The intensity of AMF growth in the subsequent cultivation years gradually increased and depended on the cultivation system as well as the growth stage and cultivar of the spelt. It was found that both analyzed AMF growth indices in the no-tillage system were positively correlated with each other. Moreover, their values were higher in the no-tillage system than in the conventional system, with statistical significance only for the number of spores. This was mainly observed in the variant with the Franckenkorn cultivar. The effect of the growing season was evident in both cultivation systems and spelt cultivars. It was reflected by intensification of sporulation and mycorrhization of spelt roots by AMF in summer (maturation stage) compared with the spring period (flowering stage).

Funder

Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

Reference75 articles.

1. The rhizosphere microbione and plant health;Berendsen;Trends Plant Sci.,2012

2. Schulze-Lefert Structure and Functions of the Bacterial Microbiota of Plants;Bulgarelli;Annu. Rev. Plant Biol.,2013

3. The phenomenon of non-mycorrhizal plants;Tester;Can. J. Bot.,1987

4. Smith, S.E., and Read, D.J. (1997). Mycorrhizal Symbiosis, Academic Press. [2nd ed.].

5. A new phylum the Glomeromycota: Phylogeny and evolution;Schwarzott;Mycol. Res.,2001

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3