Using Antimicrobial Photodynamic Therapy with Ultrasound Devices and Bioactive Glasses as a Combined Approach for Treating Dentin Caries Lesions

Author:

Besegato João Felipe1ORCID,Melo Priscila Borges Gobbo de1ORCID,Abreu Bernardi Adilson César2ORCID,Souza Marina Trevelin3,Zanotto Edgar Dutra3ORCID,Bagnato Vanderlei Salvador4ORCID,de Souza Rastelli Alessandra Nara1ORCID

Affiliation:

1. Department of Restorative Dentistry, School of Dentistry, Araraquara, São Paulo State University—UNESP, Araraquara 14801-903, SP, Brazil

2. Department of Biology and Health Sciences, University of Araraquara—UNIARA, Araraquara 14801-340, SP, Brazil

3. Vitreous Materials Laboratory (LaMaV), Department of Materials Engineering, Federal University of São Carlos—UFSCar, São Carlos 13565-905, SP, Brazil

4. Department of Materials Science and Physics, Physics Institute of São Carlos, University of São Paulo—USP, São Carlos 13566-590, SP, Brazil

Abstract

Novel approaches for caries lesion removal and treatment have been proposed. This study evaluates the combined use of an experimental ultrasound, aPDT (antimicrobial photodynamic therapy) and bioactive glasses on the removal, decontamination and remineralization of dentin caries lesions. A biological model created with a duo species biofilm (Streptococcus mutans and Lactobacillus acidophilus) was used for the development of a caries-like lesion over the dentin for 7 days. Bovine dentin specimens (4 × 4 × 2 mm) were randomized according to the following caries removal techniques: bur (BUR) or ultrasound (ULT), decontamination (with or without aPDT) and remineralization materials (45S5 or F18 bioactive glasses). The following different groups were investigated: caries lesion (control); sound dentin (control); BUR; BUR + aPDT; ULT; ULT + aPDT; BUR + 45S5, BUR + F18; ULT + 45S5; ULT + F18; BUR + aPDT + 45S5; BUR + aPDT + F18; ULT + aPDT + 45S5; and ULT + aPDT + F18. Transverse microradiography (TMR), cross-sectional microhardness (CSH), FT-Raman spectroscopy and confocal microscopy (CLSM) were performed. A two-way ANOVA and Tukey’s test were used (α = 0.05). (3) Results: The TMR revealed a lesion depth of 213.9 ± 49.5 μm and a mineral loss of 4929.3% vol.μm. The CSH increases as a function of depth, regardless of the group (p < 0.05). Removal with BUR (24.40–63.03 KHN) has a greater CSH than ULT (20.01–47.53 KHN; p < 0.05). aPDT did not affect the CSH (p > 0.05). No difference was observed between 45S5 or F18 (p > 0.05), but a change was observed for ULT (p > 0.05). The FT-Raman shows no differences for the phosphate (p > 0.05), but a difference is observed for the carbonate and C-H bonds. The CLSM images show that aPDT effectively inactivates residual bacteria. A combination of ULT, aPDT and bioactive glasses can be a promising minimally invasive treatment.

Funder

Coordination for the Improvement of Higher Education Personnel—Brazil

São Paulo Research Foundation—FAPESP

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3