Abstract
East Coast fever (ECF) is an acute fatal tick-borne disease of cattle caused by Theileria parva. It causes major losses in exotic and crossbreed cattle, but this could be prevented by a vaccine of T. parva if the vaccine is selected properly based on information from molecular epidemiology studies. The Muguga cocktail (MC) vaccine (Muguga, Kiambu 5 and Serengeti-transformed strains) has been used on exotic and crossbreed cattle. A total of 254 T. parva samples from vaccinated and unvaccinated cattle were used to understand the genetic diversity of T. parva in Malawi using partial sequences of the Tp1 and Tp2 genes encoding T. parva CD8+ antigens, known to be immunodominant and current candidate antigens for a subunit vaccine. Single nucleotide polymorphisms were observed at 14 positions (3.65%) in Tp1 and 156 positions (33.12%) in Tp2, plus short deletions in Tp1, resulting in 6 and 10 amino acid variants in the Tp1 and Tp2 genes, respectively. Most sequences were either identical or similar to T. parva Muguga and Kiambu 5 strains. This may suggest the possible expansion of vaccine components into unvaccinated cattle, or that a very similar genotype already existed in Malawi. This study provides information that support the use of MC to control ECF in Malawi.
Funder
Japan Society for the Promotion of Science
Japan Agency for Medical Research and Development
Subject
Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy