Ecoepidemiology and Potential Transmission of Vibrio cholerae among Different Environmental Niches: An Upcoming Threat in Egypt

Author:

Ismail Eman M.ORCID,Kadry Mona,Elshafiee Esraa A.ORCID,Ragab EmanORCID,Morsy Eman A.,Rizk Omar,Zaki Manal M.

Abstract

Cholera is a negative public health event caused by Vibrio cholerae. Although V. cholerae is abundant in natural environments, its pattern and transmission between different niches remain puzzling and interrelated. Our study aimed to investigate the occurrence of nonpathogenic V. cholerae in the natural environment during endemicity periods. It also aimed to highlight the role of molecular ecoepidemiology in mapping the routes of spread, transmission, and prevention of possible future cholera outbreaks. V. cholerae was detected in different aquatic environments, waterfowl, and poultry farms located along the length of the Nile River in Giza, Cairo, and Delta provinces, Egypt. After polymerase chain reaction amplification of the specific target outer membrane gene (Omp W) of suspected isolates, we performed sequence analysis, eventually using phylogenetic tree analysis to illustrate the possible epidemiological relationships between different sequences. Data revealed a significant variation in the physicochemical conditions of the examined Nile districts related to temporal, spatial, and anthropogenic activities. Moreover, data showed an evident association between V. cholerae and the clinically diseased Synodontis schall fish. We found that the environmental distress triggered by the salinity shift and elevated temperature in the Middle Delta of the Nile River affects the pathogenesis of V. cholerae, in addition to the characteristics of fish host inhabiting the Rosetta Branch at Kafr El-Zayat, El-Gharbia province, Egypt. In addition, we noted a significant relationship between V. cholerae and poultry sources that feed on the Nile dikes close to the examined districts. Sequence analysis revealed clustering of the waterfowl and broiler chicken isolates with human and aquatic isolated sequences retrieved from the GenBank databases. From the obtained data, we hypothesized that waterfowl act as a potential vector for the intermediate transmission of cholera. Therefore, continuous monitoring of Nile water quality and mitigation of Nile River pollution, in addition to following good managemental practices (GMPs), general hygienic guidelines, and biosecurity in the field of animal production and industry, might be the way to break this cyclic transmission between human, aquatic, and animal sectors.

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3