Metagenomics Insight into Veterinary and Zoonotic Pathogens Identified in Urban Wetlands of Los Lagos, Chile

Author:

Opitz-Ríos Catherine1,Burgos-Pacheco Alvaro2,Paredes-Cárcamo Francisca2,Campanini-Salinas Javier3ORCID,Medina Daniel A.12ORCID

Affiliation:

1. Laboratorio Institucional, Universidad San Sebastián, Puerto Montt 5501842, Chile

2. Escuela de Medicina Veterinaria, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Puerto Montt 5501842, Chile

3. Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt 5501842, Chile

Abstract

Wetlands are ecosystems that are essential to ecological balance and biodiversity; nevertheless, human activity is a constant threat to them. Excess nutrients are caused by intensive livestock and agricultural operations, pollution, and population growth, which in turn leads to uncontrolled microbiological development. This impairment in water quality can constitute a risk to animal, human, and environmental health. To thoroughly characterize the microbial communities, shotgun metagenomics was used to characterize the taxonomic and functional pattern of microorganisms that inhabit urban wetlands in the Los Lagos Region of Chile. The main objective was to identify microorganisms of veterinary relevance, assess their potential antibiotic resistance, and characterize the main virulence mechanism. As expected, a high diversity of microorganisms was identified, including bacteria described as animal or human pathogens, such as Pasteurella multocida, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli. Also, a diverse repertory of antimicrobial-resistant genes (ARGs) was detected in metagenomic assembled sequences and inside the sequence of mobile genetic elements, genes that confer mainly resistance to beta-lactams, consistent with the families of antibiotics most used in Chile. In addition, a diverse collection of virulence mechanisms was also identified. Given the significance of the relationship between environmental, animal, and human health—a concept known as One Health—there is a need to establish molecular surveillance programs that monitor the environmental biohazard elements using molecular tools. This work is the first report of the presence of these harmful biological elements in urban wetlands subjected to anthropogenic pressure, located in the south of Chile.

Funder

Agencia Nacional de Investigación y Desarrollo de Chile

Universidad San Sebastián

NLHPC

VRID of Universidad San Sebastián

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3