ATM Pathway Is Essential for HPV–Positive Human Cervical Cancer-Derived Cell Lines Viability and Proliferation

Author:

Abjaude Walason,Prati Bruna,Munford VeridianaORCID,Montenegro Aline,Lino VanescaORCID,Herbster Suellen,Rabachini Tatiana,Termini Lara,Menck Carlos Frederico MartinsORCID,Boccardo EnriqueORCID

Abstract

Infection with some mucosal human papillomavirus (HPV) types is the etiological cause of cervical cancer and of a significant fraction of vaginal, vulvar, anal, penile, and head and neck carcinomas. DNA repair machinery is essential for both HPV replication and tumor cells survival suggesting that cellular DNA repair machinery may play a dual role in HPV biology and pathogenesis. Here, we silenced genes involved in DNA Repair pathways to identify genes that are essential for the survival of HPV-transformed cells. We identified that inhibition of the ATM/CHK2/BRCA1 axis selectively affects the proliferation of cervical cancer-derived cell lines, without altering normal primary human keratinocytes (PHK) growth. Silencing or chemical inhibition of ATM/CHK2 reduced the clonogenic and proliferative capacity of cervical cancer-derived cells. Using PHK transduced with HPV16 oncogenes we observed that the effect of ATM/CHK2 silencing depends on the expression of the oncogene E6 and on its ability to induce p53 degradation. Our results show that inhibition of components of the ATM/CHK2 signaling axis reduces p53-deficient cells proliferation potential, suggesting the existence of a synthetic lethal association between CHK2 and p53. Altogether, we present evidence that synthetic lethality using ATM/CHK2 inhibitors can be exploited to treat cervical cancer and other HPV-associated tumors.

Funder

São Paulo Research Foundation

Coordenação de Aperfeicoamento de Pessoal de Nível Superior

National Council for Scientific and Technological Development

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3