Abstract
European sea bass (Dicentrarchus labrax) is an important farmed marine species for Mediterranean aquaculture. Outbreaks of betanodavirus represent one of the main infectious threats for this species. The red-spotted grouper nervous necrosis virus genotype (RGNNV) is the most widely spread in Southern Europe, while the striped jack nervous necrosis virus genotype (SJNNV) has been rarely detected. The existence of natural reassortants between these genotypes has been demonstrated, the RGNNV/SJNNV strain being the most common. This study aimed to evaluate the pathogenicity of different RGNNV/SJNNV strains in European sea bass. A selection of nine European reassortants together with parental RGNNV and SJNNV strains were used to perform in vivo experimental challenges via intramuscular injection. Additional in vivo experimental challenges were performed by bath immersion in order to mimic the natural infection route of the virus. Overall, results on survival rates confirmed the susceptibility of European sea bass to reassortants and showed different levels of induced mortalities. Results obtained by RT-qPCR also highlighted high viral loads in asymptomatic survivors, suggesting a possible reservoir role of this species. Our findings on the comparison of complete genomic segments of all reassortants have shed light on different amino acid residues likely involved in the variable pathogenicity of RGNNV/SJNNV strains in European sea bass.
Subject
Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献