What Does 16S rRNA Gene-Targeted Next Generation Sequencing Contribute to the Study of Infective Endocarditis in Heart-Valve Tissue?

Author:

Santibáñez PaulaORCID,García-García ConcepciónORCID,Portillo AránzazuORCID,Santibáñez SoniaORCID,García-Álvarez LaraORCID,de Toro MaríaORCID,Oteo José A.ORCID

Abstract

Infective endocarditis (IE) is a severe and life-threatening disease. Identification of infectious etiology is essential for establishing the appropriate antimicrobial treatment and decreasing mortality. The aim of this study was to explore the potential utility of metataxonomics for improving microbiological diagnosis of IE. Here, next-generation sequencing (NGS) of the V3–V4 region of the 16S rRNA gene was performed in 27 heart valve tissues (18 natives, 5 intravascular devices, and 4 prosthetics) from 27 patients diagnosed with IE (4 of them with negative blood cultures). Metataxonomics matched with conventional diagnostic techniques in 24/27 cases (88.9%). The same bacterial family was assigned to 24 cases; the same genus, to 23 cases; and the same species, to 13 cases. In 22 of them, the etiological agent was represented by percentages > 99% of the reads and in two cases, by ~70%. Staphylococcus aureus was detected in a previously microbiological undiagnosed patient. Thus, microbiological diagnosis with 16S rRNA gene targeted-NGS was possible in one more sample than using traditional techniques. The remaining two patients showed no coincidence between traditional and 16S rRNA gene-targeted NGS microbiological diagnoses. In addition, 16S rRNA gene-targeted NGS allowed us to suggest coinfections that were supported by clinical data in one patient, and minority records also verified mixed infections in three cases. In our series, metataxonomics was valid for the identification of the causative agents, although more studies are needed before implementation of 16S rRNA gene-targeted NGS for the diagnosis of IE.

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3