Rapid Dissemination of blaNDM-5 Gene among Carbapenem-Resistant Escherichia coli Isolates in a Yellow-Feather Broiler Farm via Multiple Plasmid Replicon

Author:

Ma Zhenbao12ORCID,Wang Bo1,Zeng Dongping1ORCID,Ding Huanzhong1,Zeng Zhenling1

Affiliation:

1. Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China

2. Animal Husbandry and Fisheries Research Center of Guangdong Haid Group Co., Ltd., Guangzhou 511490, China

Abstract

Although carbapenems have not been approved for animal use, carbapenem-resistant Escherichia coli (CREC) strains are increasingly being detected in food-producing animals, posing a significant public health risk. However, the epidemiological characteristics of CREC isolates in yellow-feather broiler farms remain unclear. We comprehensively investigated the genetic features of carbapenem-resistance genes among E. coli isolates recovered from a yellow-feather broiler farm in Guangdong province, China. Among the 172 isolates, 88 (51.2%) were recovered from chicken feces (88.5%, 54/61), the farm environment (51.1%, 24/47), and specimens of dead chickens (15.6%, 41/64). All CREC isolates were positive for the blaNDM-5 gene and negative for other carbapenem-resistance genes. Among 40 randomly selected isolates subjected to whole-genome sequencing, 10 belonged to distinct sequence types (STs), with ST167 (n = 12) being the most prevalent across different sources, suggesting that the dissemination of blaNDM-5 was mainly due to horizontal and clonal transmission. Plasmid analysis indicated that IncX3, IncHI2, and IncR-X1-X3 hybrid plasmids were responsible for the rapid transmission of the blaNDM-5 gene, and the genetic surrounding of blaNDM-5 contained a common mobile element of the genetic fragment designated “IS5-△ISAba125-blaNDM-5-bleMBL-trpF-dsbC”. These findings demonstrate a critical role of multiple plasmid replicons in the dissemination of blaNDM-5 and carbapenem resistance.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3