Glycyrrhizin Interacts with TLR4 and TLR9 to Resolve P. aeruginosa Keratitis

Author:

Somayajulu MallikaORCID,McClellan Sharon A.,Farooq Shukkur Muhammed,Pitchaikannu Ahalya,Xu ShunbinORCID,Hazlett LindaORCID

Abstract

This study tests the mechanism(s) of glycyrrhizin (GLY) protection against P. aeruginosa keratitis. Female C57BL/6 (B6), TLR4 knockout (TLR4KO), myeloid specific TLR4KO (mTLR4KO), their wildtype (WT) littermates, and TLR9 knockout (TLR9KO) mice were infected with P. aeruginosa KEI 1025 and treated with GLY or PBS onto the cornea after infection. Clinical scores, photography with a slit lamp, RT-PCR and ELISA were used. GLY effects on macrophages (Mϕ) and polymorphonuclear neutrophils (PMN) isolated from WT and mTLR4KO and challenged with KEI 1025 were also tested. Comparing B6 and TLR4KO, GLY treatment reduced clinical scores and improved disease outcome after infection and decreased mRNA expression levels in cornea for TLR4, HMGB1, and RAGE in B6 mice. TLR9 mRNA expression was significantly reduced by GLY in both mouse strains after infection. GLY also significantly reduced HMGB1 (B6 only) and TLR9 protein (both B6 and TLR4KO). In TLR9KO mice, GLY did not significantly reduce clinical scores and only slightly improved disease outcome after infection. In these mice, GLY significantly reduced TLR4, but not HMGB1 or RAGE mRNA expression levels after infection. In contrast, in the mTLR4KO and their WT littermates, GLY significantly reduced corneal disease, TLR4, TLR9, HMGB1, and RAGE corneal mRNA expression after infection. GLY also significantly reduced TLR9 and HMGB1 corneal protein levels in both WT and mTLR4KO mice. In vitro, GLY significantly lowered mRNA expression levels for TLR9 in both Mϕ and PMN isolated from mTLR4KO or WT mice after incubation with KEI 1025. In conclusion, we provide evidence to show that GLY mediates its effects by blocking TLR4 and TLR9 signaling pathways and both are required to protect against disease.

Funder

National Eye Institute

Research to Prevent Blindness

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3