Network Pharmacology and Molecular Docking Analysis Reveal Insights into the Molecular Mechanism of Shengma-Gegen Decoction on Monkeypox

Author:

Dai LiujiangORCID,Zhang GuizhongORCID,Wan Xiaochun

Abstract

Background: A new viral outbreak caused by monkeypox has appeared after COVID-19. As of yet, no specific drug has been found for its treatment. Shengma-Gegen decoction (SMGGD), a pathogen-eliminating and detoxifying agent composed of four kinds of Chinese herbs, has been demonstrated to be effective against several viruses in China, suggesting that it may be effective in treating monkeypox, however, the precise role and mechanisms are still unknown. Methods: Network pharmacology was used to investigate the monkeypox-specific SMGGD targets. These targets were analyzed via String for protein-to-protein interaction (PPI), followed by identification of hub genes with Cytoscape software. Function enrichment analysis of the hub targets was performed. The interactions between hub targets and corresponding ligands were validated via molecular docking. Results: Through screening and analysis, a total of 94 active components and 8 hub targets were identified in the TCM-bioactive compound-hub gene network. Molecular docking results showed that the active components of SMGGD have strong binding affinity for their corresponding targets. According to functional analysis, these hub genes are mainly involved in the TNF, AGE-RAGE, IL-17, and MAPK pathways, which are linked to the host inflammatory response to infection and viral replication. Therefore, SMGGD might suppress the replication of monkeypox virus through the MAPK signaling pathway while also reducing inflammatory damage caused by viral infection. Conclusion: SMGGD may have positive therapeutic effects on monkeypox by reducing inflammatory damage and limiting virus replication.

Funder

National Key R&D Program of China

Shenzhen Basic Science Research Project

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3