Identifying the Drivers Related to Animal Reservoirs, Environment, and Socio-Demography of Human Leptospirosis in Different Community Types of Southern Chile: An Application of Machine Learning Algorithm in One Health Perspective

Author:

Talukder Himel1,Muñoz-Zanzi Claudia2ORCID,Salgado Miguel3,Berg Sergey4ORCID,Yang Anni1ORCID

Affiliation:

1. Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, OK 73019, USA

2. Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55454, USA

3. Preventive Veterinary Medicine Department, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile

4. Department of Computer & Information Science, University of St. Thomas, St. Paul, MN 55105, USA

Abstract

Leptospirosis is a zoonosis with global public health impact, particularly in poor socio-economic settings in tropical regions. Transmitted through urine-contaminated water or soil from rodents, dogs, and livestock, leptospirosis causes over a million clinical cases annually. Risk factors include outdoor activities, livestock production, and substandard housing that foster high densities of animal reservoirs. This One Health study in southern Chile examined Leptospira serological evidence of exposure in people from urban slums, semi-rural settings, and farm settings, using the Extreme Gradient Boosting algorithm to identify key influencing factors. In urban slums, age, shrub terrain, distance to Leptospira-positive households, and neighborhood housing density were contributing factors. Human exposure in semi-rural communities was linked to environmental factors (trees, shrubs, and lower vegetation terrain) and animal variables (Leptospira-positive dogs and rodents and proximity to Leptospira-positive households). On farms, dog counts, animal Leptospira prevalence, and proximity to Leptospira-contaminated water samples were significant drivers. The study underscores that disease dynamics vary across landscapes, with distinct drivers in each community setting. This case study demonstrates how the integration of machine learning with comprehensive cross-sectional epidemiological and geospatial data provides valuable insights into leptospirosis eco-epidemiology. These insights are crucial for informing targeted public health strategies and generating hypotheses for future research.

Funder

National Science Foundation, the Ecology of Infectious Diseases Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3