Investigation of Camphor Effects on Fusarium graminearum and F. culmorum at Different Molecular Levels

Author:

Gazdağlı Aylin,Sefer Özlem,Yörük Emre,Varol Gülin,Teker Tuğba,Albayrak GülruhORCID

Abstract

Fusarium graminearum and F. culmorum are phytopathogens, which cause destructive diseases in cereals. Epidemics of these phytopathogens are caused by mycotoxin contamination and the reduction of crop quality. In this study, the alteration due to in vitro camphor treatment on F. culmorum 9F and F. graminearum H11 isolates was investigated in terms of epigenetic, cellular, and transcription levels. Camphor with different concentrations (0.2, 0.4, 0.8, 1, 2, and 4 µg/µL) was applied to potato dextrose agar (PDA) growth media. The minimum inhibitory concentration (MIC) and the half maximal inhibitory concentration (IC50) were calculated as 2 and 1 µg/µL, respectively. hog1, mst20, CAT, POD, mgv1, stuA, and tri5 genes, which are related to various cellular processes and pathogenesis, were examined by qPCR assay. qPCR analysis showed that camphor treatment leads to the downregulation of tri5 expression but the upregulation of the remaining genes. Apoptosis and oxidative stress were confirmed via acridine orange/ethidium bromide (AO/EB) and dichlorofluorescin diacetate (DCF-DA) staining, respectively. Moreover, coupled restriction enzyme digestion-random amplification (CRED-RA) assay, used for DNA methylation analysis, was carried out to evaluate epigenetic alterations. The decrease in genomic template stability (GTS) values, which resulted due to the alterations in random amplified polymorphic DNA (RAPD) profiles caused by camphor treatment, were detected as 97.60% in F. culmorum 9F and 66.27% in F. graminearum H-11. The outer and inner methylated cytosine profiles are determined by CRED-RA assay as type I–IV epigenetic alterations. The outcomes indicated that camphor could lead to alterations at several molecular levels of F. graminearum and F. culmorum.

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

Reference40 articles.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3