Application of the In Vitro HoxB8 Model System to Characterize the Contributions of Neutrophil–LPS Interaction to Periodontal Disease

Author:

Sochalska MajaORCID,Stańczyk Magdalena B.,Użarowska Maria,Zubrzycka Natalia,Kirschnek SusanneORCID,Grabiec Aleksander M.ORCID,Kantyka TomaszORCID,Potempa JanORCID

Abstract

(1) Background: Studying neutrophils in vitro is difficult since these cells are terminally differentiated and are easily activated during isolation. At the same time, most of the available model cell lines are associated with certain limitations, such as functional deficiency or a lack of expression of surface markers characteristic of neutrophils. P. gingivalis is a periodontopathogen that causes dysbiosis in subgingival bacterial biofilm. This triggers the accumulation of functional neutrophils in the periodontium. However, until now, the specific effects of P. gingivalis-derived lipopolysaccharide on neutrophil functions have not been analyzed. (2) Methods: The impact of two variants of commercially available P. gingivalis endotoxin on neutrophil functions was tested using the HoxB8 in vitro system that is well suited to analyze neutrophil response to different stimuli in a controlled manner. (3) Results: The Standard P. gingivalis lipopolysaccharide (LPS), known to activate cells through Toll-like receptor 2 (TLR2)- and Toll-like receptor 4 (TLR4)-dependent pathways, prolonged neutrophil survival and exhibited pro-inflammatory effects. In contrast, Ultrapure LPS, binding exclusively to TLR4, neither protected neutrophils from apoptosis, nor induced an inflammatory response. (4) Conclusion: Two variants of P. gingivalis-derived LPS elicited effects on neutrophils and, based on the obtained results, we concluded that the engagement of both TLR2 and TLR4 is required for the manipulation of survival and the stimulation of immune responses of HoxB8 neutrophils.

Funder

Fundacja na rzecz Nauki Polskiej

Foundation for the National Institutes of Health

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3