Modulation of Macrophage Redox and Apoptotic Processes to Leishmania infantum during Coinfection with the Tick-Borne Bacteria Borrelia burgdorferi

Author:

Pessôa-Pereira Danielle12,Scorza Breanna M.12ORCID,Cyndari Karen I.23,Beasley Erin A.12,Petersen Christine A.12

Affiliation:

1. Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA

2. Center for Emerging Infectious Diseases, University of Iowa, Iowa City, IA 52242, USA

3. Department of Emergency Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA

Abstract

Canine leishmaniosis (CanL) is a zoonotic disease caused by protozoan Leishmania infantum. Dogs with CanL are often coinfected with tick-borne bacterial pathogens, including Borrelia burgdorferi in the United States. These coinfections have been causally associated with hastened disease progression and mortality. However, the specific cellular mechanisms of how coinfections affect microbicidal responses against L. infantum are unknown. We hypothesized that B. burgdorferi coinfection impacts host macrophage effector functions, prompting L. infantum intracellular survival. In vitro experiments demonstrated that exposure to B. burgdorferi spirochetes significantly increased L. infantum parasite burden and pro-inflammatory responses in DH82 canine macrophage cells. Induction of cell death and generation of mitochondrial ROS were significantly decreased in coinfected DH82 cells compared to uninfected and L. infantum-infected cells. Ex vivo stimulation of PBMCs from L. infantum-seronegative and -seropositive subclinical dogs with spirochetes and/or total Leishmania antigens promoted limited induction of IFNγ. Coexposure significantly induced expression of pro-inflammatory cytokines and chemokines associated with Th17 differentiation and neutrophilic and monocytic recruitment in PBMCs from L. infantum-seropositive dogs. Excessive pro-inflammatory responses have previously been shown to cause CanL pathology. This work supports effective tick prevention and risk management of coinfections as critical strategies to prevent and control L. infantum progression in dogs.

Funder

U. S. National Institutes of Health

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3