Abstract
Arthropod-borne apicomplexan pathogens remain a great concern and challenge for disease control in animals and humans. In order to prevent Babesia infection, the discovery of antigens that elicit protective immunity is essential to establish approaches to stop disease dissemination. In this study, we determined that poly-N-acetylglucosamine (PNAG) is conserved among tick-borne pathogens including B. bovis, B. bigemina, B. divergens, B. microti, and Babesia WA1. Calves immunized with synthetic ß-(1→6)-linked glucosamine oligosaccharides conjugated to tetanus toxoid (5GlcNH2-TT) developed antibodies with in vitro opsonophagocytic activity against Staphylococcus aureus. Sera from immunized calves reacted to B. bovis. These results suggest strong immune responses against PNAG. However, 5GlcNH2-TT-immunized bovines challenged with B. bovis developed acute babesiosis with the cytoadhesion of infected erythrocytes to brain capillary vessels. While this antigen elicited antibodies that did not prevent disease, we are continuing to explore other antigens that may mitigate these vector-borne diseases for the cattle industry.
Funder
United States Department of Agriculture
Alopexx Vaccine, LLC
Subject
Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献