Serial Passage of Cryptococcus neoformans in Galleria mellonella Results in Increased Capsule and Intracellular Replication in Hemocytes, but Not Increased Resistance to Hydrogen Peroxide

Author:

Ali Muhammad Fariz,Tansie Stephen M.,Shahan John R.,Seipelt-Thiemann Rebecca L.,McClelland Erin E.ORCID

Abstract

To gain insight into how pathogens adapt to new hosts, Cryptococcus neoformans (H99W) was serially passaged in Galleria mellonella. The phenotypic characteristics of the passaged strain (P15) and H99W were evaluated. P15 grew faster in hemolymph than H99W, in vitro and in vivo, suggesting that adaptation had occurred. However, P15 was more susceptible to hydrogen peroxide in vitro, killed fewer mouse macrophages, and had less fungal burden in human ex vivo macrophages than H99W. Analysis of gene expression changes during Galleria infection showed only a few different genes involved in the reactive oxygen species response. As P15 sheds more GXM than H99W, P15 may have adapted by downregulating hemocyte hydrogen peroxide production, possibly through increased capsular glucuronoxylomannan (GXM) shedding. Hemocytes infected with P15 produced less hydrogen peroxide, and hydrogen peroxide production in response to GXM-shedding mutants was correlated with shed GXM. Histopathological examination of infected larvae showed increased numbers and sizes of immune nodules for P15 compared to H99W, suggesting an enhanced, but functionally defective, response to P15. These results could explain why this infection model does not always correlate with murine models. Overall, C. neoformans’ serial passage in G. mellonella resulted in a better understanding of how this yeast evolves under selection.

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3