Affiliation:
1. Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
2. College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
Abstract
Ribosome assembly factors have been extensively studied in yeast, and their abnormalities may affect the assembly process of ribosomes and cause severe damage to cells. However, it is not clear whether mRNA turnover protein 4 (MRT4) functions in the fungal growth and pathogenicity in Sclerotinia sclerotiorum. Here, we identified the nucleus-located gene SsMRT4 using reverse genetics, and found that knockdown of SsMRT4 resulted in retard mycelia growth and complete loss of pathogenicity. Furthermore, mrt4 knockdown mutants showed almost no appressorium formation and oxalic acid production comparing to the wild-type and complementary strains. In addition, the abilities to ROS elimination and resistance to oxidative and osmotic stresses were also seriously compromised in mrt4 mutants. Overall, our study clarified the role of SsMRT4 in S. sclerotiorum, providing new insights into ribosome assembly in regulating pathogenicity and resistance to environmental stresses of fungi.
Funder
National Natural Science Foundation of China
Provincial (National) Innovation and Entrepreneurship Training Program
Subject
Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献