Galacto-Oligosaccharides as an Anti-Infective and Anti-Microbial Agent for Macrolide-Resistant and -Sensitive Mycoplasma pneumoniae

Author:

Zhu Hongzhen1,Cai Yang23ORCID,Slimmen Lisa J. M.1,de Bruijn Adrianus C. J. M.1,van Rossum Annemarie M. C.4,Folkerts Gert2ORCID,Braber Saskia2,Unger Wendy W. J.1ORCID

Affiliation:

1. Laboratory of Pediatrics, Department of Pediatrics, Erasmus MC, University Medical Centre Rotterdam, Sophia Children’s Hospital, 3015 GD Rotterdam, The Netherlands

2. Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands

3. Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China

4. Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Erasmus MC, University Medical Center Rotterdam, Sophia Children’s Hospital, 3015 GD Rotterdam, The Netherlands

Abstract

The worldwide increase in the incidence of antibiotic resistance of the atypical bacterium Mycoplasma pneumoniae (MP) challenges the treatment of MP infections, especially in children. Therefore, alternative strategies for the treatment of MP infections are warranted. Galacto- and fructo-oligosaccharides (GOS and FOS) are a specific group of complex carbohydrates that were recently shown to possess direct anti-pathogenic properties. In this study, we assessed whether GOS and FOS exert anti-microbial and anti-infective effects against MP and, especially, macrolide-resistant MP (MRMP) in vitro. The MIC values of GOS for MP and MRMP were 4%. In contrast, the MIC values of FOS for both MP and MRMP were 16%. A time-kill kinetic assay showed that FOS possess bacteriostatic properties, while for GOS, a bactericidal effect against MP and MRMP was observed after 24 h at a concentration of 4x MIC. In co-cultures with human alveolar A549 epithelial cells, GOS killed adherent MP and MRMP and also concentration-dependently inhibited their adherence to A549 cells. Further, GOS suppressed (MR)MP-induced IL-6 and IL-8 in A549 cells. None of the aforementioned parameters were affected when FOS were added to these co-cultures. In conclusion, the anti-infective and anti-microbial properties of GOS could provide an alternative treatment against MRMP and MP infections.

Funder

Chinese Scholarship Council

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3