Xenorhabdus and Photorhabdus Bacteria as Potential Candidates for the Control of Culex pipiens L. (Diptera: Culicidae), the Principal Vector of West Nile Virus and Lymphatic Filariasis

Author:

Yüksel Ebubekir1ORCID,Yıldırım Alparslan2,İmren Mustafa3,Canhilal Ramazan1,Dababat Abdelfattah A.4ORCID

Affiliation:

1. Department of Plant Protection, Faculty of Agriculture, Kayseri Erciyes University, Kayseri 38030, Türkiye

2. Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, Kayseri 38280, Türkiye

3. Department of Plant Protection, Faculty of Agriculture, Abant Izzet Baysal University, Bolu 14030, Türkiye

4. International Maize and Wheat Improvement Centre (CIMMYT), Ankara 06000, Türkiye

Abstract

Vector-borne diseases pose a severe threat to human and animal health. Culex pipiens L. (Diptera: Culicidae) is a widespread mosquito species and serves as a vector for the transmission of infectious diseases such as West Nile disease and Lymphatic Filariasis. Synthetic insecticides have been the prime control method for many years to suppress Cx. pipiens populations. However, recently, the use of insecticides has begun to be questioned due to the detrimental impact on human health and the natural environment. Therefore, many authorities urge the development of eco-friendly control methods that are nontoxic to humans. The bacterial associates [Xenorhabdus and Photorhabdus spp. (Enterobacterales: Morganellaceae)] of entomopathogenic nematodes (EPNs) (Sterinernema spp. and Heterorhabditis spp.) (Rhabditida: Heterorhabditidae and Steinernematidae) are one of the green approaches to combat a variety of insect pests. In the present study, the mosquitocidal activity of the cell-free supernatants and cell suspension (4 × 107 cells mL−1) of four different symbiotic bacteria (Xenorhabdus nematophila, X. bovienii, X. budapestensis, and P. luminescens subsp. kayaii) was assessed against different development stages of Cx. pipiens (The 1st/2nd and 3rd/4th instar larvae and pupa) under laboratory conditions. The bacterial symbionts were able to kill all the development stages with varying levels of mortality. The 1st/2nd instar larvae exhibited the highest susceptibility to the cell-free supernatants and cell suspensions of symbiotic bacteria and the efficacy of the cell-free supernatants and cell suspensions gradually declined with increasing phases of growth. The highest effectiveness was achieved by the X. bovienii KCS-4S strain inducing 95% mortality to the 1st/2nd instar larvae. The results indicate that tested bacterial symbionts have great potential as an eco-friendly alternative to insecticides.

Publisher

MDPI AG

Subject

Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3