A Proof-of-Concept Protein Microarray-Based Approach for Serotyping of Salmonella enterica Strains

Author:

Braun Sascha D.12,Müller Elke12,Frankenfeld Katrin3,Gary Dominik3ORCID,Monecke Stefan12ORCID,Ehricht Ralf124ORCID

Affiliation:

1. Leibniz Institute of Photonic Technology, Member of the Research Alliance “Leibniz Health Technologies’’ and the Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany

2. InfectoGnostics Research Campus Jena, Center for Applied Research, 07743 Jena, Germany

3. INTER-ARRAY by Fzmb GmbH, 99947 Bad Langensalza, Germany

4. Institute of Physical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany

Abstract

Salmonella enterica, a bacterium causing foodborne illnesses like salmonellosis, is prevalent in Europe and globally. It is found in food, water, and soil, leading to symptoms like diarrhea and fever. Annually, it results in about 95 million cases worldwide, with increasing antibiotic resistance posing a public health challenge. Therefore, it is necessary to detect and serotype Salmonella for several reasons. The identification of the serovars of Salmonella enterica isolates is crucial to detect and trace outbreaks and to implement effective control measures. Our work presents a protein-based microarray for the rapid and accurate determination of Salmonella serovars. The microarray carries a set of antibodies that can detect different Salmonella O- and H-antigens, allowing for the identification of multiple serovars, including Typhimurium and Enteritidis, in a single miniaturized assay. The system is fast, economical, accurate, and requires only small sample volumes. Also, it is not required to maintain an extensive collection of sera for the serotyping of Salmonella enterica serovars and can be easily expanded and adapted to new serovars and sera. The scientific state of the art in Salmonella serotyping involves the comparison of traditional, molecular, and in silico methods, with a focus on economy, multiplexing, accuracy, rapidity, and adaptability to new serovars and sera. The development of protein-based microarrays, such as the one presented in our work, contributes to the ongoing advancements in this field.

Funder

Federal Ministry of Education and Research

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3