Digital Twin of Shipbuilding Process in Shipyard 4.0

Author:

Iwańkowicz Remigiusz1ORCID,Rutkowski Radosław1ORCID

Affiliation:

1. Faculty of Economics and Transport Engineering, Maritime University of Szczecin, 70-500 Szczecin, Poland

Abstract

Maximum digitalization is the current trend in industrial development. The digital industrial revolution has been underway for more than a dozen years. Industry 4.0 and the idea of digital twins (DT) are becoming the focus of virtually all industrial sectors. Some sectors are more predisposed to digitalization, while for others, the process is much more difficult. This mainly depends on the specific characteristics and susceptibility of a given industry, including the current degree of digitalization of companies, as well as the knowledge and mental readiness of employees. The individual characteristics of an industry are important. Shipbuilding is a traditional industry where the level of digitalization is still low. As a result, the efficiency of shipbuilding processes and the quality of ships built are not sufficiently controlled. The article addresses this problem, reviews work in the field of digitalization of shipbuilding processes, and identifies the needs and challenges in this area. The article proposes the concept of a DT system for the entire ship design and production process. Key areas of digitalization of the actual processes were defined, and a division was made into planning, monitoring, and process analysis activities. Special attention was paid to the area of dimensional quality control, and the dimensional quality management metasystem (DQMM) was introduced into the comprehensive DT system. The requirements were defined, and the limitations of the proposed solution were identified, taking into account a number of external factors, including the degree of readiness of the manufacturer—the shipyard. The developed DT system concept was tested using the example of the construction process of a simplified ship. Practical aspects of the implementation of the proposed solution, in particular, DQMM, were pointed out.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3