A New Combination Model for Air Pollutant Concentration Prediction: A Case Study of Xi’an, China

Author:

Yang Fan1,Huang Guangqiu1,Li Yanan1

Affiliation:

1. School of Management, Xi’an University of Architecture and Technology, Xi’an 710055, China

Abstract

As energy demand continues to increase, the environmental pollution problem is becoming more severe. Governments and researchers have made great efforts to avoid and reduce air pollution. The prediction of PM2.5, as an important index affecting air quality, has great significance. However, PM2.5 concentration has a complex change process that makes its prediction challenging. By calculating both PM2.5 concentration and that of other pollutants in the atmosphere and meteorological factors, it is evident that the variation in PM2.5 concentration is influenced by multiple factors, and that relevant features also influence each other. To reduce the calculated loss, with full consideration given to the influencing factors, we used the maximum correlation and minimum redundancy (MRMR) algorithm to calculate the correlation and redundancy between features. In addition, it is known from the Brock–Dechert–Scheinman (BDS) statistical results that the change in PM2.5 is nonlinear. Due to the outstanding performance of bidirectional long short-term memory (BiLSTM) neural networks in nonlinear prediction, we constructed an encoder–decoder model based on BiLSTM, named ED-BiLSTM, to predict the PM2.5 concentration at monitoring stations. For areas without monitoring sites, due to the lack of historical data, the application of neural networks is limited. To obtain the pollutant concentration distribution in the study area, we divided the study area into a 1 km × 1 km grid and combined the ED-BiLSTM model via the use of the inverse distance weighting (IDW) algorithm to obtain the PM2.5 concentration values in a region without monitoring stations. Finally, ArcGIS was used to visualize the results. The data for the case study were obtained from Xi’an. The results show that, compared with the standard long short-term memory (LSTM) model, the RMSE, MAE, and MAPE of our proposed model were reduced by 24.06%, 24.93%, and 22.9%, respectively. The proposed model has a low error for PM2.5 prediction and can provide a theoretical basis for the formulation of environmental protection policies.

Funder

National Natural Science Foundation of China

Key Project of Basic Natural Science Research Plan of Shaanxi Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3