Three-Dimensional Terahertz Coded-Aperture Imaging Based on Back Projection

Author:

Chen ShuoORCID,Luo Chenggao,Wang Hongqiang,Wang Wenpeng,Peng Long,Zhuang Zhaowen

Abstract

Terahertz coded-aperture imaging (TCAI) can overcome the difficulties of traditional radar in forward-looking and high-resolution imaging. Three-dimensional (3D) TCAI relies mainly on the reference-signal matrix (RSM), the large size and poor accuracy of which reduce the computational efficiency and imaging ability, respectively. According to the previous research on TCAI, traditional TCAI cannot reduce the heavy computational burden while the improved TCAI achieve reconstructing the target parts of different ranges in parallel. However, large-sized RSM still accounts for the computational complexity of traditional TCAI and the improved TCAI. Therefore, this paper proposes a more efficient imaging method named back projection (BP)-TCAI (BP-TCAI). Referring to the basic principle of BP, BP-TCAI can not only divide the scattering information in different ranges but also project the range profiles into different imaging subareas. In this way, the target parts in different subareas can be reconstructed simultaneously to synthesize the whole 3D target and thus decomposes the computational complexity thoroughly. During the pulse compression and projection processes, the signal-to-noise ratio (SNR) of BP-TCAI is also improved. This present the imaging method, model and procedures of traditional TCAI, the improved TCAI and the proposed BP-TCAI. Numerical experimental results prove BP-TCAI to be more effective and efficient than previous imaging methods of TCAI. Besides, BP-TCAI can also be seen as synthetic aperture radar (SAR) imaging with coding technology. Therefore, BP-TCAI opens a future gate combining traditional SAR and coded-aperture imaging.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3