RPC-Based Orthorectification for Satellite Images Using FPGA

Author:

Zhang Rongting,Zhou Guoqing,Zhang Guangyun,Zhou Xiang,Huang Jingjin

Abstract

Conventional rational polynomial coefficients (RPC)-based orthorectification methods are unable to satisfy the demands of timely responses to terrorist attacks and disaster rescue. To accelerate the orthorectification processing speed, we propose an on-board orthorectification method, i.e., a field-programmable gate array (FPGA)-based fixed-point (FP)-RPC orthorectification method. The proposed RPC algorithm is first modified using fixed-point arithmetic. Then, the FP-RPC algorithm is implemented using an FPGA chip. The proposed method is divided into three main modules: a reading parameters module, a coordinate transformation module, and an interpolation module. Two datasets are applied to validate the processing speed and accuracy that are achievable. Compared to the RPC method implemented using Matlab on a personal computer, the throughputs from the proposed method and the Matlab-based RPC method are 675.67 Mpixels/s and 61,070.24 pixels/s, respectively. This means that the proposed method is approximately 11,000 times faster than the Matlab-based RPC method to process the same satellite images. Moreover, the root-mean-square errors (RMSEs) of the row coordinate (ΔI), column coordinate (ΔJ), and the distance ΔS are 0.35 pixels, 0.30 pixels, and 0.46 pixels, respectively, for the first study area; and, for the second study area, they are 0.27 pixels, 0.36 pixels, and 0.44 pixels, respectively, which satisfies the correction accuracy requirements in practice.

Funder

National Natural Science of China

GuangXi Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3