Comparative Transcriptome and Metabolome Analysis of Rubber Trees (Hevea brasiliensis Muell. Arg.) Response to Aluminum Stress

Author:

Ma Xiaowei12,Cheng Linlin1,Peng Wentao1,Xie Guishui1,Liu Zifan2,Yang Zongming12,Wang Ying3,An Feng1ORCID

Affiliation:

1. Hainan Danzhou Agro-Ecosystem National Observation and Research Station, Rubber Research Institute of Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China

2. College of Tropical Crops, Hainan University, Haikou 570228, China

3. Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China

Abstract

Aluminum (Al) toxicity severely restricts crop growth and productivity in acidic soils. The rubber tree is one of the most economically important crops in tropical regions, which is tolerant to high concentrations of Al in sand or hydroponic culture conditions compared with other plants that have been reported. However, the mechanisms of Al tolerance in rubber trees remain unknown. In this study, we conducted a transcriptome and metabolome analysis for rubber tree sapling roots treated with 200 mM Al for 0 (CK), 2 or 5 days, respectively. Compared with the CK, a total of 9534 differentially expressed genes (DEGs) and 3821 differentially expressed metabolites (DEMs) were identified in 2 d of Al treatment. There were 10,373 DEGs and 4636 DEMs after 5 d of Al treatment, and 1626 DEGs and 1674 DEMs between 2 and 5 d of Al treatment. The DEGs mainly concentrated in transporters, transcription factors (TFs), cell wall biosynthesis and antioxidant systems, and the DEMs were mainly focused on lipids and lipid-like molecules, organic acids and derivatives, organic oxygen compounds, phenylpropanoids and polyketides. The combined transcriptome and metabolome analysis indicated DEGs and DEMs involved in ABC transporters, glutathione metabolism, flavonoid biosynthesis and phenylalanine metabolic pathways were identified to be closely associated with the Al tolerance of rubber trees. Our study elucidated the mechanism of rubber trees’ tolerance to Al at the transcriptional and metabolic levels, which provides a theoretical basis for the study of Al tolerance both for rubber trees and other woody plants.

Funder

National Natural Science Foundation of China

Hainan Provincial Natural Science Foundation of China

Earmarked Fund for China Agriculture Research System

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3