A Real-Time GNSS-R System for Monitoring Sea Surface Wind Speed and Significant Wave Height

Author:

Xing JinORCID,Yu Baoguo,Yang Dongkai,Li Jie,Shi Zhejia,Zhang GuodongORCID,Wang Feng

Abstract

This paper presents a monitoring system based on Global Navigation Satellite System (GNSS) reflected signals to provide real-time observations of sea conditions. Instead of a computer, the system uses a custom-built hardware platform that incorporates Radio Frequency (RF), Field Programmable Gate Array (FPGA), Digital Signal Processing (DSP), and Raspberry Pi for real-time signal processing. The suggested structure completes the navigation signal’s positioning as well as the reflected signal’s feature extraction. Field tests are conducted to confirm the effectiveness of the system and the retrieval algorithm described in this research. The entire system collects and analyzes signals at a coastal site in the field experiment, producing sea surface wind speed and significant wave height (SWH) that are compared to local weather station data, demonstrating the system’s practicality. The system can allow the centralized monitoring of many sites, as well as field experiments and real-time early warning at sea.

Funder

China Postdoctoral Innovation Talent Support Program

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3