Internal Force Analysis of Buried-boring Piles in the Yuanzishan Landslide

Author:

Wang HaoORCID,Lv Zhiying,Zhang Jianwei,Yue Jianwei,Qin Hongyu,Hung Chaoying

Abstract

The Yuanzishan landslide is an unstable slope in Langzhong County, located in northeast Sichuan province, China. The Guangyuan-Nanchong expressway passes through the front edge of the unstable slope, and subgrade excavation has resulted in slope deformation, which threatens the safety of the highway construction. Emergency landslide control requires reduction of the slope disturbance. This study aims to investigate the use of buried-boring piles as a potential method for emergency landslide control. A simplified calculation method was used for the design of the buried-boring piles, according to the limit equilibrium of the soil and the elastic foundation coefficient method. The measured internal force changes of the pile were compared, in order to determine the distribution coefficients of the driving force. A relationship between the driving force of the shared pile ratio and the buried depth ratios was then established. Furthermore, a variety of factors affecting the internal forces of the buried-boring pile and the lateral reaction of the soil were also studied. The results revealed that (1) there was a quadratic relationship between the driving force of the pile-shared ratio and the sliding depth ratios; (2) the maximum bending moment of the pile increased with an increase in the sliding depth ratio of the pile, following a power law relationship; (3) increasing the buried depth of the pile head reduced the influence of the pile diameter on the maximum internal forces; (4) increasing the pile diameter decreased the maximum lateral reaction of the soil. The buried-boring piles can be used in similarly unstable regions for emergency control of deforming slopes.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3