Plant Species-Dependent Effects of Liming and Plant Residue Incorporation on Soil Bacterial Community and Activity in an Acidic Orchard Soil

Author:

Liu Xiaodi,Feng Zengwei,Zhou Yang,Zhu Honghui,Yao QingORCID

Abstract

Both liming and plant residue incorporation are widely used practices for the amelioration of acidic soils—however, the difference in their effects is still not fully understood, especially regarding the microbial community. In this study, we took the acidic soils from a subtropical orchard as target soils, and implemented liming and plant residue incorporation with a leguminous and a gramineous cover crop as test plants. After six months of growth, soil pH, total organic carbon (TOC), dissolved organic carbon (DOC) and nutrient contents were determined, soil enzymes involving C, N, P cycling were assayed, and microbial communities were also analyzed using Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE). Results showed that liming was more effective in elevating soil pH, while plant residue incorporation exerted a more comprehensive influence—not only on soil pH, but also on soil enzyme activity and microbial community. PCR-DGGE analysis revealed that liming changed the microbial community structure more greatly than plant residue incorporation, while plant residue incorporation altered the microbial community composition much more than liming. The growth responses of test plants to liming and plant residue incorporation depended on plant species, indicating the necessity to select appropriate practice for a particular crop. A further, detailed investigation into the microbial community composition, and the respective functions using metagenomic approach, is also suggested.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3