Development of Bubble Size Correlation for Adiabatic Forced Convective Bubbly Flow in Low Pressure Condition Using CFD Code

Author:

Bak Jinyeong,Kim Huiyung,Jeong Jae Jun,Euh Dongjin,Yun Byongjo

Abstract

In a multidimensional two-phase flow analysis, bubble size significantly affects interfacial transfer terms such as mass, momentum, and energy. With regard to bubbly flow, the application of a simple correlation-type bubble size model presents certain advantages, including short calculation times and ease of usage. In this study, we propose a semi-theoretical correlation developed from a steady state bubble number density transport equation for predicting the distribution of local bubble size using a computational fluid dynamics (CFD) code. The coefficients of the new correlation were determined using the local bubble parameters obtained on the basis of three existing vertical air-water experiments. Finally, these were implemented in commercial CFD code and evaluated against experimental data, which showed that the proposed correlation exhibits good prediction capability for forced convective air-water bubbly flows under low pressure conditions.

Funder

Ministry of Science and ICT, South Korea

Nuclear Safety and Security Commission

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3