Abstract
Here we theoretically and experimentally demonstrated the arbitrary phase modulation of a general transmittance function (GTF) of the first-order optical comb filter based on a polarization-diversity loop structure, which employed two ordered waveplate sets (OWS’s) of a quarter-wave plate (QWP) and a half-wave plate (HWP). The proposed comb filter is composed of a polarization beam splitter (PBS), two equal-length polarization-maintaining fiber (PMF) segments, and two OWS’s of a QWP and an HWP with each set located before each PMF segment. The second PMF segment is butt-coupled to one port of the PBS so that its principal axis should be 22.5° away from the horizontal axis of the PBS. First, we explained a scheme to find four waveplate orientation angles (WOA’s) allowing the phase of a GTF to be arbitrarily modulated, using the way each component of the filter, such as a waveplate or PMF segment, affects its input or output polarization. Then, with the WOA finding method, we derived WOA sets of the four waveplates, which could give arbitrary phase retardations ϕ’s from 0° to 360° to a GTF chosen here arbitrarily. Finally, we showed phase-modulated GTF’s calculated at eight selected WOA sets allowing ϕ’s to be 0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°, and then the predicted results were verified by experimentally measured results. It is concluded from the theoretical and experimental demonstrations that the GTF of our filter based on the OWS of a QWP and an HWP can be arbitrarily phase-modulated by properly controlling the WOA’s of the four waveplates.
Funder
National Research Foundation of Korea
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献