Abstract
We experimentally studied the Rydberg level shift caused by the electric field, which is generated by Rydberg atom collision induced ionization in a cesium atomic ensemble. The density of charged particles caused by collisions between Rydberg atoms is changed by controlling the ground-state atomic density and optical excitation process. We measured the Rydberg level shift using Rydberg electromagnetically-induced-transparency (EIT) spectroscopy, and interpreted the physical origin using a semi-classical model. The experimental results are in good agreement with the numerical simulation. These energy shifts are important for the self-calibrated sensing of microwave field by the employing of Rydberg EIT. Moreover, in contrast to the resonant excitation case, narrow-linewidth spectroscopy with high signal-to-noise ratio would be useful for high-precision measurements.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献