Decoding Visual Motions from EEG Using Attention-Based RNN

Author:

Yang Dongxu,Liu Yadong,Zhou ZongtanORCID,Yu Yang,Liang Xinbin

Abstract

The main objective of this paper is to use deep neural networks to decode the electroencephalography (EEG) signals evoked when individuals perceive four types of motion stimuli (contraction, expansion, rotation, and translation). Methods for single-trial and multi-trial EEG classification are both investigated in this study. Attention mechanisms and a variant of recurrent neural networks (RNNs) are incorporated as the decoding model. Attention mechanisms emphasize task-related responses and reduce redundant information of EEG, whereas RNN learns feature representations for classification from the processed EEG data. To promote generalization of the decoding model, a novel online data augmentation method that randomly averages EEG sequences to generate artificial signals is proposed for single-trial EEG. For our dataset, the data augmentation method improves the accuracy of our model (based on RNN) and two benchmark models (based on convolutional neural networks) by 5.60%, 3.92%, and 3.02%, respectively. The attention-based RNN reaches mean accuracies of 67.18% for single-trial EEG decoding with data augmentation. When performing multi-trial EEG classification, the amount of training data decreases linearly after averaging, which may result in poor generalization. To address this deficiency, we devised three schemes to randomly combine data for network training. Accordingly, the results indicate that the proposed strategies effectively prevent overfitting and improve the correct classification rate compared with averaging EEG fixedly (by up to 19.20%). The highest accuracy of the three strategies for multi-trial EEG classification achieves 82.92%. The decoding performance for the methods proposed in this work indicates they have application potential in the brain–computer interface (BCI) system based on visual motion perception.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3