Separation Process and Microstructure-Chemical Composition Relationship of Cenospheres from Lignite Fly Ash Produced from Coal-Fired Power Plant in Thailand

Author:

Yoriya SorachonORCID,Tepsri Phattarathicha

Abstract

The cenosphere is one becoming a focus of the power plant in terms of value addition and ash management. This study presents a systematic investigation and characterization of physical properties, morphological structures, and chemical composition of cenospheres separated from fly ash produced from the Mae Moh coal-fired power plant, Thailand. To our knowledge, this is the first report on cenospheres separation from Mae Moh class C fly ash, with high calcium content ~24 wt.%, by adopting the traditional wet separation method (using water as the medium) to separate the lightweight cenospheres. Various effects of process parameters (fly ash-to-water ratio, stirring method, ultrasonication, and size classification) were designed to examine the cenosphere recovery yield in comparison. The result has revealed the limit of physical stirring-settling effect associated with the cenospheres content by nature governing the percent recovery. The bulk cenospheres were subject to size sieving into different sized fractions, with the structure-chemical composition relationship established for more insight. The particle diameter/shell thickness ratio revealed its significant correlation with the aluminosilicate glass composition, with the relating cenosphere shell structures (single-ring and porous) mapped to compare for a better elucidation of their structure-property relationship. The phase composition was also studied.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference72 articles.

1. Production of multiphase plaster and anhydrite from Mae Moh flue-gas desulphurised gypsum

2. Hazardous Emissions from Thai Coal-Fired Power Plants: Toxic and Potentially Toxic Elements in Fly Ashes Collected from Mae Moh Thai Petrochemical Industry Coal-Fired Power Plants in Thailand, 2002;Brigden,2002

3. Reuse options for coal fired power plant bottom ash and fly ash

4. Costs and Benefits of Flue Gas Desulfurization for Pollution Control at the Mae Moh Power Plant, Thailand

5. Development of fly ash usage in Thailand;Tangtermsirikul;Soc. Soc. Manag. Syst. Int. J.,2005

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3